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Group Field Theory: An Overview1

L. Freidel2,3

We give a brief overview of the properties of a higher-dimensional generalization of
matrix model which arise naturally in the context of a background approach to quantum
gravity, the so-called group field theory. We show in which sense this theory provides
a third quantization point-of-view on quantum gravity.

1. INTRODUCTION

Spin foam models describe the dynamics of loop quantum gravity in terms of
state sum models. The purpose of these models is to construct the physical scalar
product which is one of the main object of interest in quantum gravity. Namely,
given a four-manifold M with boundaries �0, �1 and given a diffeomorphism
class of three metric [g0] on �0 and [g1] on �1 we want to compute

〈[g0]|P|[g1]〉 =
∫
M

D[g]eiS(g), (1)

the integral being over M: The space of all metrics on M modulo
4-diffeomorphism which agree with g0, g1 on ∂M . The action is the Einstein
Hilbert action and P denotes the projector on the kernel of the hamiltonian
constraint. This expression is of course highly formal, their is no good non
perturbative5 definition of the measure on M and no good handle on the space of
kinematical states |[g]〉

In loop quantum gravity there is a good understanding of the kinemati-
cal Hilbert space (see Ashtekar and Lewandowski, 2004 for a review). In this
framework the states are given by spin networks � where � is a graph embedded
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in a three space � and  denotes a coloring of the edges of � by representations
of a group G6 and a coloring of the vertex of � by intertwiners (invariant tensor)
of G. These states are eigenvectors of geometrical operators, the representations
labeling edges of the spin network are interpreted as giving a quanta of area
l2
p

√
j (j + 1) to a surface intersecting �.
In this context the spacetime is obtained as a spin network history: If one

evolve in time a spin network it will span a foam-like structure i.e., a combinatorial
two-complex denoted F . The edges of the spin network will evolve into faces of F
the vertices of � will evolve into edges of F and transition between topologically
different spin networks will occur at vertices of F . The spin network coloring
induces a coloring of F : The faces of F are colored by representation f of G and
edges of F are colored by intertwiners ıe of G. Such a colored two complex F(f ,ıe)

is called a spin foam (Baez, 1998; Perez, 2003). By construction the boundary of
a spin foam is an union of spin networks.

The definition is so far purely combinatorial, however if one restrict the
two-dimensional complex F to be such that D faces meet at edges of F and
D + 1 edges meets at vertices of F we can reconstruct from F a D-dimensional
piecewise-linear pseudo-manifold MF with boundary (De Pietri, 2001; De Pietri
and Petronio, 2000). Roughly speaking, each vertex of F can be viewed to be dual
to a D-dimensional simplex and the structure of the two-dimensional complex
gives the prescription for gluing these simplices together and constructing MF .
The spin network states are dual to the boundary triangulation of MF .

A local spin foam model is characterized by a choice of local amplitudes
Af (f), Ae(fe , ıe), Av(fv , ıev ) assigned respectively to the faces, edges and ver-
tices of F . Af depends only on the representation coloring the face, Ae on the
representations of the faces meeting at e and the intertwiner coloring the edge e,
likewise Av depends only on the representations and intertwiners of the faces and
edges meeting at v.

Given a two complex F with boundaries �0, �1 colored by 0, 1 the
Transition amplitude is given by

A(F) = 〈�0 |�1〉F ≡
∑
f ,ıe

∏
f

Af(f)
∏

e

Ae(fe , ıe)
∏

v

Av(fv , ıev ), (2)

the sum being over the labeling of internal faces and edges not meeting the
boundary. Note that a priori the amplitude depend explicitly on the choice of the
two complex F .

There are many examples of such models. Historically, the first example is
due to Ponzano and Regge (1968): They showed that the quantum amplitude for
euclidean 2 + 1 gravity with zero cosmological constant can be expressed as a
spin foam model where the group G is SU(2), the faces are labeled by SU(2)

6 In conventional loop quantum gravity the group is SL(2, C), more generally G is a Lorentz group.
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spin jf
7 and the local amplitudes are given by Af(f) = (2jf + 1), Ae(fe ) = 1

and the vertex amplitude Av(fv ) which depends on six spins is the normalized
6j symbol or Racah–Wigner coefficient. The remarkable feature of this model
is that it does n’t depend on the choice of the two complex F but only on MF .
The inclusion of cosmological constant or lorentzian gravity can be implemented
easily by taking the group to be a quantum group (Turaev and Viro, 1992) or to be a
noncompact Lorentz group (Freidel, 2000). Along the same line, it was shown that
four-dimensional topological field theory called BF theory (Baez, 1996) can be
quantized in terms of triangulation independent spin foam model (Ooguri, 1992).

It was first realized by Reisenberger that spin foam models give a natural arena
to deal with four-dimensional quantum gravity (Reisenberger, 1994). Two seminal
works triggered more interest on spin foam models: In the first one Barrett-Crane
(1998) proposed a spin foam model for four-dimensional general relativity.8 This
model is obtained from the spin foam model of pure BF by restricting the Lorentz
representation to be simple, so that the spin coloring the faces are SU(2) represen-
tations in the Euclidean context. In the second one, it was shown by Reisenberger
and Rovelli (1997) that the evolution operator in loop quantum gravity can be
expressed as a spin foam model and they propose an interpretation of the ver-
tex amplitude in terms of the matrix elements of the hamiltonian constraint of
loop quantum gravity (Thiemann, 1998). The spin labeling the faces are SU(2)
representations and are interpreted as quanta of area.

It was soon realized that spin foam models can naturally incorporate causal-
ity (Markopoulou and Smolin, 1997), Lorentzian signature (Barrett and Crane,
2000) and coupling to gauge field theory (Oriti and Pfeiffer, 2002; Mikovic,
2002). The Barret–Crane prescription was understood to be linked to the Ple-
banski formulation of gravity where the Einstein action is written as a BF the-
ory subject to constraints (De Pietri and Freidel, 1999). This formulation and
the corresponding spin foam models was extended to gravity in any dimensions
(Freidel et al., 1999).

The main lesson is that spin foam is a very general structure which allows
to address in a background independent manner the dynamical issues of a large
class of diffeomorphism invariant models including gravity in any dimensions
coupled to gauge fields (Freidel and Krasnov, 1999). This formulation naturally
incorporated the fact that the kinematical Hilbert space of the theory is labeled by
spin networks.9

7 No edges intertwiner is needed since in three dimensions we restrict to only three face meeting along
each edge and there is a unique normalized intertwiner between three SU(2) representation.

8 More precisely a prescription for the vertex amplitude.
9 This is relevant in view of the “LOST” uniqueness theorem stating that there is a unique diffeo-

morphism invariant representation (Sahlmann, 2002; Sahlmann and Thiemann, 2003; Okolow and
Lewandowski, 2003) of a theory with phase space a pair of electric and magnetic field.



1772 Freidel

A different line-of-development originated from the detail study of the vertex
amplitude proposed by Barret–Crane and the corresponding higher-dimensional
quantum gravity models (Barrett, 1998; Freidel and Krasnov, 2000). These studies
shows that these amplitudes can be written as some Feynman graph evaluation.
For instance in the original Barrett-crane model

Av(1, . . . , 10) =
∫

S3

5∏
i=1

dxi

∏
i �=j

Gij
(xi, xj ), (3)

where the 10 spins are simple representations of SO(4) labeling the 10 faces of
the four-simplex and G (x, y) is the Hadamard propagator of S3, (�S3 + j (j +
1))Gj = 0, G(x, x) = 1.

This structure was calling a field theory interpretation of spin foam models.
It was eventually found by De Pietri et al. (2000) that the Barrett–Crane spin
foam model can remarkably be interpreted as a Feynman graph of a new type of
theory baptized “group field theory” (GFT for short). The GFT structure was first
discovered by Boulatov (1992) in the context of three-dimensional gravity where
a similar connection was made and further developed by Ooguri in the context
of 4d BF theory (Ooguri, 1992). Ambjorn, Durhuus, and Jonnson (1991) also
pointed out similar structure in the context of dynamical triangulation. It is clear
in this context that group field theory can be understood in a precise sense as a
higher-dimensional generalization of matrix models which generates a summation
over two-dimensional gravity models (Di Francesco et al., 1995).

Reisenberger and Rovelli (2001) showed, in an key work, that the appearance
of GFT in the context of spin foam models is not an accident but a generic feature.
They proved that any local spin foam model of the form (2) can be interpreted as
a Feynman graph of a group field theory.

We have argued that spin foam models generically appear in the context
of background independent approach to quantum gravity (Freidel and Krasnov,
1999), this results shows that GFT is an important and unexpected universal
structure behind the dynamics of such models. A deeper understanding of this
theory is clearly needed. GFT was originally designed to address one of the main
shortcomings of the spin foam approach: namely the fact that the spin foam
amplitude (2) depends explicitly on the discrete structure (the two complex or
triangulation). As we will now see in more details it does much more than that and
give a third quantization point-of-view on gravity where spacetime is emergent
and dynamical.

2. GROUP FIELD THEORY

2.1. Definition

In this section, we introduce the general GFT action that can be specialized
to define the various spin foam models described in the introduction.
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We consider a Lie group G which is the Lorentz group in dimension D

(G = SO(D) for Euclidean gravity models and G = SO(D − 1, 1) for Lorentzian
ones.10 D is the dimension of the spacetime and we will call the corresponding
GFT a D-GFT. The field φ(x1, . . . , xD), denoted φ(xi) where i = 1 . . . D, is a
function on GD . The dynamics is defined by an action of the general form

SD[φ] = 1

2

∫
dxi dyi φ(xi)K

(
xiy

−1
i

)
φ(yi) + λ

D + 1

∫ D+1∏
i �=j=1

dxij V
(
xij x

−1
ji

)
×φ(x1j ) · · · φ(xD+1j ),

where dx is an invariant measure on G, we use the notation φ(x1j ) =
φ(x12, . . . , x1D+1). K(Xi) is the kinetic and V(Xij ) (Xij = xij x

−1
ji ) the interac-

tion kernel, λ a coupling constant, the interaction is chosen to be homogeneous of
degree D + 1. K,V satisfy the invariance properties

K(gXig
′) = K(Xi), V

(
giXijg

−1
j

) = V(Xij ). (4)

This implies that the action is invariant under the gauge transformations δφ(xi) =
ψ(xi), where ψ is any function satisfying∫

G

dgψ(gx1, . . . , gxD) = 0. (5)

This symmetry is gauge fixed if one restrict the field φ to satisfy φ(gxi) = φ(xi).
The action is also invariant under

φ(x1, . . . , xD) → φ(x1g, . . . , xDg). (6)

The main interest of these theories resides in the following crucial properties they
satisfy. Most of them are well established, some are new (property 4) and some
(property 6) still conjectural. Altogether they give a picture of the relevance of
GFT for background independent approach to quantum gravity and lead to the
conclusion (or conjecture) that GFT provides a third quantization of gravity.

GFT Properties:

1. The Feynman graph of a D-GFT are cellular complexes dual to a
D-dimensional triangulated topological spacetime.

2. The Feynman graph evaluation of a GFT are local spin foam models. Any
local spin foam model can be obtained from a GFT.

3. Spin networks label polynomial gauge invariant operators of the GFT.
4. The tree-level two-point function of GFT gauge invariant operators gives a

proposal for the physical scalar product. This proposal involves spacetime
of trivial topology and is triangulation independent.

10 It is also possible to generalize the definition to quantum groups or fuzzy group, we will restrict the
discussion to compact group to avoid unnecessary technical subtleties.
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5. The full two-point function of GFT gauge invariant operators gives a
prescription for the quantum gravity amplitude including a sum over all
topologies.

6. The possible loop divergences of GFT Feynman graphs are interpreted
to be a consequence of a residual action of spacetime diffeomorphism on
spin foam. One expect a relation between the renormalization group of
GFT and the group of spacetime diffeomorphism.

2.2. GFT: Examples and Properties

In this section we give some examples and illustrate the properties listed
above.

Some examples: The simplest examples comes from the choice

K(xi, yi) =
∫

G

dg
∏

i

δ
(
xiy

−1
i g

)
, V(Xij ) =

∫ ∏
i

dgi

∏
i<j

δ
(
giXijg

−1
j

)
,

(7)

δ(·) is the delta function on G and the integrals insure the gauge invariance (5).
If one further restrict to dimension D = 2 the symmetry property implies

that φ(g1, g2) = φ̃(x−1
1 x2). φ̃ being a function on the group can be expanded in

Fourier modes. Let’s consider G = SU(2), denote by Vj the spin j representation,
dj its dimension, Dj (x) ∈ End(Vj) the group matrix element and define


j ≡
∫

dx φ̃(x)Dj (x−1), φ̃(x) =
∑

j

dj Tr(
jD
j (x)). (8)

One can readily see Livine et al. (2001) that the GFT reduces to a sum of matrix
models:

S2[φ] =
∑

j

dj

(
Tr

(

2

j

) + λ

3
Tr

(

3

j

))
. (9)

It is well known that the Feynman graph expansion of a matrix model is expressed
in terms of fat graphs (Di Francesco et al., 1995), each edge can be represented as a
double line each one carrying a matrix index, the trivalent interaction implies that
this graph is dual to a triangulation of a two-dimensional closed surface. Moreover
if one compute the Feynman evaluation of a genus g diagram � diagram we find

I (�) =
∑

j

d
2−2g

j , (10)
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Fig. 1. Graphical representation of the propagator and interaction of a 3-GFT.

which is the evaluation of the partition function of topological BF theory in
two dimension on a surface of genus g.11 This result exemplifies the properties
(1, 2). This property generalizes to any D, the Feynman graph evaluation of the
example (7) gives the partition function of BF theory in dimension D.

Property 1. To illustrate this property in higher dimension let’s consider the
case of dimension D = 3, the field φ possess three arguments, so each edge of a
Feynman graph possesses three strands running parallel to it, four edges meet at
each vertex and the form of the interaction V forces the strands to recombine as
in Fig. 1.

Each strand of the graph form a closed loop which can be interpreted as
the boundary of a two-dimensional disk. These data are enough to reconstruct a
topological two-dimensional complex F , the vertices and edges of this complex
correspond to vertices and edges or the Feynman graph, the boundary of the
faces of F correspond to the strands of the Feynman graph. As we have already
emphasized we can reconstruct a triangulated three-dimensional pseudo-manifold
from such data.

It can be understood as follows: The three strands running along the edges
can be understood to be dual to a triangle and the propagator gives a prescription
for the gluing of two triangles. At the vertex four triangles meet and their gluing
form a tetrahedra (see Fig. 2). With this interpretation the Feynman graph of a GFT
is clearly dual to a three-dimensional triangulation. This is true in any dimension
(De Pietri, 2001; De Pietri and Petronio, 2000; De Pietri et al., 2000).

This means that the perturbative expansion of the partition function can be
expressed as a sum over two complexes

Z =
∫

Dφe−SD [
] =
∑
F

λ|V |

sym(F)
I (F), (11)

11 If one choose the propagator K(xi , yi ) = ∫
G

dg
∏

i δε (xiy
−1
i g) with δε the heat kernel on the group,

(∂ε + �G)δε = 0, δ0(g) = δ(g) we obtain the partition function of 2D Yang–Mills theory as a
Feynman graph evaluation (Witten, 1991).
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Fig. 2. Triangulation generated by Feynman diagrams.

where the sum is over two complex, |V | is the number of vertices of F , sym(F)
the symmetry factor of F and I (F) the GFT Feynman graph evaluation of the
complex F .

Property 2. Since the field φ is a function on D copies of the group it
can be expanded in Fourier modes (8), the “momentum” of this field are spins
which circulate along the strands of the Feynman graph or equivalently which
label the faces of the complex F . From the quantum gravity point-of-view this
spin is interpreted as a quanta of area carried by the face. The computation of the
Feynman graph in “momentum” space contains contributions from the Fourier
modes of the propagator which gives edges amplitude Ae; from the Fourier mode
of the interaction kernel which gives a vertex amplitude Av and from the trace
over the representation circulating on each face. Overall, the evaluation I (F) can
be expressed as a local spin foam model (2).

To precise this correspondence let’s give a geometrical interpretation of the
invariance property (4) of the interaction kernel V: Let �D be the graph of a D-
dimensional simplex which consists of D + 1 vertices and D(D + 1)/2 edges. V
is a function of group elements associated with the edges of �D which is invariant
under an action of the gauge group at the vertices of �D . We denote the space
of such function by L2(�D). L2(�D) admits an orthonormal basis labeled by spin
networks (�D, ij , ıi), where ij are spins labeling the edges and ıi are intertwiners
labeling the vertices of �D . Given (�D, ij , ıi), we can uniquely construct a spin
network functional �ij ,ıi (Xij ).12 The interaction kernel can be expanded in terms
of this basis as follows

Av(ij , ıi) =
∫ ∏

i<j

dXijV(Xij )�ij ,ıi (Xij ),

V(Xij ) =
∑
ij ,ıi

∏
i<j

dij
Av(ij , ıi)�ij ,ıi (Xij ). (12)

12 Given a spin network (�, e, ıv) the spin network functional ��,e,ıv (xe) is obtained by contracting
the matrix elements of xe in the representation e with the intertwiners ıv according to the topology
of the graph �. By construction this functional is invariant under the action of the group at each
vertex of �.
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Similarly, the quadratic kernelK(Xi) can be expanded in terms of the spin network
functional 
i

(Xi) associated with the “theta” graph which consists of two vertex
joined by D edges:

1/Ae(i) =
∫ ∏

i

dXiK(Xi)�i
(Xi) K(Xij ) =

∑
i

∏
i

di
1/Ae(i)�i

(Xi).

(13)
It is now a direct computation to show that I (F) is expressed as a local spin
foam model with the edges and vertex amplitude determined by (12, 13) and
the face amplitude being the dimension of the representation labeling the face.13

Conversely, given a spin foam model we can reconstruct a GFT via (12, 13). This
establishes the equivalence or duality between spin foam models and GFT, which
was first proven in Reisenberger and Rovelli (2001). One can now check that the
example (7) gives in three dimension the Ponzano–Regge model and in higher
dimensions the discretization of topological BF. With this prescription we can
also reconstruct from the Barrett–Crane amplitude (3) the interaction kernel:

VBC(Xij ) =
∫

G

∏
i

dgidhi

∫
H

∏
i �=j

duij

∏
i<j

δ(giuijhiXij (gjujihj )−1), (14)

where G = SO(4) and H = SO(3) ⊂ SO(4).
Property 3. We have discussed so far only the partition function of the GFT,

but one should also consider expectation value of GFT operators. The physical
operators O(φ) should be gauge invariant under (5, 6). Such operators can be
constructed with the help of spin network: Let’s consider a spin network (�, e, ıv)
such that all its vertices have valency D and let’s denote �(�,e,ıv)(xe) the corre-
sponding spin network functional (see footnote 12). We denote by V� , E� the set
of vertices of � and define the observable of the D-GFT

O(�,e,ıv)(φ) =
∫

G

∏
(ij )∈E�

dxij dxji �(�,e,ıv)(xij (xji)
−1)

∏
i∈V�

φ(xij ). (15)

The element xij are associated to all the edges of � meeting at the vertex i, by
construction there is always D such elements. This observable is homogenous in φ,
the degree of homogeneity being the number of vertices of �. It is straightforward
to check that this observable respect the symmetries of the GFT.

Property 4. We can now come back to the original problem, that is the
construction of the physical scalar product. Since spin networks label operators
of the GFT, we propose to define this scalar product as the evaluation of the GFT
two point function in the tree level truncation. Namely, given two D valent spin

13 It is possible to produce different face amplitude by modifying the symmetry properties of the action
(De Pietri et al., 2000).
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network �1, �2 having N1, N2 vertices we define

〈�1|�2〉0 ≡ 〈O�1 |O�2〉T ree =
∑

F∈TN1 ,N2

I (F)

sym(F)
. (16)

TN1,N2 denote the space of GFT Feynman graphs supported on connected trees
having N1 initial univalent vertices and N2 final univalent vertices, we sum over
all of them.

This simple proposal for the scalar product does not depend on a particular
triangulation, and therefore it addresses one of the main shortcomings of the
spin foam approach. This product satisfies two crucial properties: First, it is well
defined and finite, since it is a tree-level evaluation no infinite summation are
involved. Second, it is positive but not strictly positive, it possesses a kernel. This
kernel should be expected, since the physical scalar product of quantum gravity
(1) computes the matrix elements of the projector on the kernel of the hamiltonian
constraints. This means that any vector in the image of the hamiltonian constraint
belongs to the kernel of (1). In our case, one can show that the GFT scalar product
(1) has a kernel which is in the image of the GFT equation of motion. Namely, the
following gauge invariant observable

δO(�,e,ıv)(φ) =
∫

G

∏
i

dxi

(
K−1 δS[φ]

δφ

)
(xi)

δO(�,e,ıv)(φ)

δφ(xi)
, (17)

is in the kernel of (16). In this formula K−1 is the propagator, it is convoluted with
the equation of motion. We can expand this observable as a linear combination of
spin network observables, the first term in the expansion of δO� is O� the other
terms are spin network observables containing D more fields.

The physical Hilbert space can be constructed as an application of the
Gelfand–Naimark–Segel theorem. It is obtained from the kinematical Hilbert
space spanned by spin networks, by quotienting out the vectors in the kernel of
(16): Hphys = H/Ker〈·|·〉0 (Perez and Rovelli, 2001). The induced scalar product
on Hphys is positive definite.

The product (16) involves only tree Feynman graphs. Using the correspon-
dence between GFT Feynman graphs and discrete manifolds one sees that all
the manifolds involved in the sum are of the same topology and describe a ball
on the boundary of which the operators are inserted. Since this product (16) is
independent of the choice of triangulation it can be thought as a “continuous”
scalar product. One might worry that this is realized without taking any sort of
continuum or refinement limit and therefore that this prescription describes some
sort of topological field theory. This is not the case, in this prescription the com-
plexity of the spacetime triangulation involved in the summation grows with the
complexity of the boundary spin network state. If one consider highly complicated
spin network states that approach a continuum geometry, the corresponding spin
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foams (discrete spacetimes) involved in the summation are also highly compli-
cated and good approximation of a continuous geometry. Also, we have seen that
δO� is a linear combination of O� and higher order spin network operators. We
can therefore replace in the computation of the scalar product, the state � by a
linear combination of spin network states of higher degree, and continue this re-
placement in each new terms ad infinitum, therefore ending with a expression for
the scalar product in terms of a linear combination of arbitrarily fine triangulations
which gives a “true” continuum limit expression of the scalar product. This use
of the kernel express the fact that a subset of the Hilbert space based on a fine
triangulation can be effectively described in terms of states leaving on a coarser
one. The theory is not topological if this subset is a proper subspace (this is the
case for the Barrett–Crane model for instance).

This proposal for a physical scalar product in the context of loop quantum
gravity closes in some sense a long quest starting from the construction of the
hamiltonian constraints, a search for its solutions and for the physical scalar
product. It gives us a hint on the answer to the last question (which contains the
others), it doesn”t end the quest but provides a new starting point. The problem is
now to understand the dynamical content which is contained in such a proposal and
to see wether at least one GFT (the Barrett–Crane one for instance) possesses the
right dynamical content and can reproduce the physics of general relativity in the
infrared. This question is not new, but with the help of the GFT it can be asked for
the first time in terms of a proposed physical scalar product. The difficulty resides
in the fact that the dynamics is encoded in terms of spin networks transition
amplitudes, a language far remote from semiclassical physics and one need to
design criteria to select the right model or to test and eventually refute a proposed
one.

Property 5. The previous scalar product can be naturally extended to include
a sum over all Feynman graphs of the GFT, this was the original proposal (De
Pietri et al., 2000), the gravity amplitude is in this case

〈�1|�2〉λ = ln

[
λ− N1+N2

D−1

Z

∫
Dφ O�1 (φ)O�2 (φ)e−SD [
]

]

=
∑

F ,∂F=�1∪�2

λ|V |− N1+N2
D−1

sym(F)
I (F). (18)

where |V | is the number of vertices of F , this correspond to the number of D

simplex of the dual triangulation, the sum is over connected graph matching the
given spin network on the boundary, N1, N2 are the degree of homogeneity of the
operators O�1 ,O�2 and Z is the partition function (11). The coupling parameter
λ weights, in the perturbation expansion, the size of the discrete spacetime. It
can be given another interpretation: Let’s define α = λ1/D−1 and let’s redefine
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the fields φ̃ = αφ, the action becomes Sλ[φ] = 1/α2S̃[φ̃] where S̃ = Sλ=1 is
independent of the coupling constant. The amplitude can be expanded in α,
〈�1|�2〉α = α−2 ∑

i α
2i〈�1|�2〉i where 〈�1|�2〉i is a sum of GFT Feynman graphs

containing i loops. From the space time point-of-view adding a loop to a GFT
Feynman diagram amounts to adding a handle to the discrete manifold. Hence
α controls the strength of topology change. In the limit α = 0, we recover the
classical evaluation (16) where topology change is suppressed. This can be also
understood by looking at the Schwinger–Dyson equation of motion. Let’s focus for
simplicity on the nucleation amplitude where �1 = ∅,O�1 = 1 which described
the creation of a spacetime from nothing. The Schwinger–Dyson equation reads

〈δO�〉α = α2〈δ2O�〉α, (19)

where δO� (17) is in the kernel of the physical scalar product and

δ2O� ≡
∫

G

∏
i

dxidyjK−1(xi, yj )
δ2O�(φ)

δφ(xi)δφ(yj )
. (20)

We have seen that the field φ is dual to a D − 1 simplex, the operator δO� corre-
sponds to a sum of spin network boundary states, one being a triangulation dual
to � the others obtained by subdividing one of the D − 1 simplex of this trian-
gulation. The operator δ2O� deletes two D − 1 simplices and glues the resulting
holes together thus creating an handle. This handle creation is weighted by α2.

Note that the scalar product 〈·|·〉α is strictly positive, the states δO� which
are in the kernel of 〈·|·〉0 now generates topology change (19).

Since we now include Feynman graphs with loops we have to worry about
potential perturbative divergences due to the Feynman graph evaluation. A careful
analysis shows that the potential divergences of the GFT are not associated with
loops but with higher-dimensional analogs: The so-called “bubbles” of the spin
foam (Perez and Rovelli, 2001). A bubble is a collection of faces of the two
complex F which forms a closed surface. Each time a bubble appears the sum
over spins (GFT momenta) is unrestricted and potentially infinite. A remarkable
finiteness result was proven in Perez (2001) for the Barrett–Crane model. It was
shown that if one take the interaction kernel (14) and the propagator (7), there are no
divergences arising in the computation of Feynman graph (associated with regular
two-dimensional complex), the corresponding GFT is super-renormalizable in this
case.

There is also a possibility of potential non-perturbative divergences which
arises from the sum over topology. It is well known that the number of triangulated
manifold of arbitrary topology grows factorially with the number of building block
and the sum (18) is therefore not convergent for any nonzero value of α. This is
not surprising from the GFT point of view since we know that a perturbative
expansion should be interpreted as an asymptotic series, not a convergent series.
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In some cases, this series is uniquely Borel summable and the GFT provides a
nonperturbative definition for the sum over all topologies. This was shown to be
true in the context of three-dimensional gravity where Borel summability of a mild
modification of the Boulatov model was proven. It is not known wether this can
be achieved in four-dimensional gravity.

Property 6. As we already mentioned, the key open problem is to gain an
understanding of the low-energy effective physics from the GFT. One proposal for
addressing this question is to focus on the issue of the diffeomorphism symmetry.
We know that any theory which depends on a metric reproduces gravity in the in-
frared if it is invariant under spacetime diffeomorphism. In loop quantum gravity,
spin networks label the gravitational degree of freedom, this suggests that any spin
foam model which can be shown to respect spacetime diffeomorphism will contain
gravity in a low energy limit. The problem is therefore to have a proper understand-
ing of the action of spacetime diffeomorphism on spin foam models. It was argued
in Freidel and Louapre (2003) (and exemplified in the context of three-dimensional
gravity) that diffeomorphism symmetry should act as a gauge symmetry on the spin
foam amplitudes. This means that the initial spin foam amplitudes 2 which are not
gauge fixed with respect to this symmetry and which do not break diffeomorphism
symmetry should possess divergences coming from the ungauged integration over
the diffeomorphism gauge group. Diffeomorphism symmetry is due to the Bianchi
identity which is a three form on spacetime and then couples to the bubbles of spin
foams. Therefore diffeomorphism symmetry should manifest itself in the bubble
divergences.

This analysis leads to the conclusion that the LBarret–Crane GFT model
proposed in Perez and Rovelli (2001); Oriti and Williams (2001) which has no
bubble divergences is not a satisfactory model.14 From the GFT point-of-view the
bubble divergences is analogous to the loop divergences in usual field theory. We
know that such divergences are the manifestation of a nontrivial renormalization
group acting on the parameter space of field theory.

Since, as we have seen in this note, any relevant property of spin foam
model admits its dual formulation in the GFT, this strongly suggest that a proper
understanding of the action of the diffeomorphism group on spin foam models is
related to a proper understanding of the GFT renormalization group.

14 The prescription of Perez and Rovelli (2001); Oriti and Williams (2001) differs from the original
prescription (De Pietri et al., 2000) (which possess bubble divergences) by the choice of the kinetic
term of the GFT. This kinetic term controls the way different vertex amplitude are glued together.
There is a large consensus and good understanding of the Barrett–Crane vertex amplitude but so far,
no general agreement on the choice of the kinetic term has been reached. Different choices leads to
different properties with respect to the bubble divergences. Of course this argumentation is not yet
conclusive since it contain hypothesis and unresolved issues.
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